Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 447
Filtrar
1.
Adv Sci (Weinh) ; : e2309824, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561966

RESUMO

Precise agriculture based on intelligent agriculture plays a significant role in sustainable development. The agricultural Internet of Things (IoTs) is a crucial foundation for intelligent agriculture. However, the development of agricultural IoTs has led to exponential growth in various sensors, posing a major challenge in achieving long-term stable power supply for these distributed sensors. Introducing a self-powered active biochemical sensor can help, but current sensors have poor sensitivity and specificity making this application challenging. To overcome this limitation, a triboelectric nanogenerator (TENG)-based self-powered active urea sensor which demonstrates high sensitivity and specificity is developed. This device achieves signal enhancement by introducing a volume effect to enhance the utilization of charges through a novel dual-electrode structure, and improves the specificity of urea detection by utilizing an enzyme-catalyzed reaction. The device is successfully used to monitor the variation of urea concentration during crop growth with concentrations as low as 4 µm, without being significantly affected by common fertilizers such as potassium chloride or ammonium dihydrogen phosphate. This is the first self-powered active biochemical sensor capable of highly specific and highly sensitive fertilizer detection, pointing toward a new direction for developing self-powered active biochemical sensor systems within sustainable development-oriented agricultural IoTs.

2.
J Agric Food Chem ; 72(14): 8018-8026, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557039

RESUMO

Phloretin is widely found in fruit and shows various biological activities. Here, we demonstrate the dimethylallylation, geranylation, and farnesylation, particularly the first dimethylallylation at the nonaromatic carbon of phloretin (1) by the fungal prenyltransferase AnaPT and its mutants. F265 was identified as a key amino acid residue related to dimethylallylation at the nonaromatic carbon of phloretin. Mutants AnaPT_F265D, AnaPT_F265G, AnaPT_F265P, AnaPT_F265C, and AnaPT_F265Y were discovered to generally increase prenylation activity toward 1. AnaPT_F265G catalyzes the O-geranylation selectively at the C-2' hydroxyl group, which involves an intramolecular hydrogen bond with the carbonyl group of 1. Seven products, 1D5, 1D7-1D9, 1G2, 1G4, and 1F2, have not been reported prior to this study. Twelve compounds, 1D3-1D9, 1G1-1G3, and 1F1-1F2, exhibited potential inhibitory effects on α-glucosidase with IC50 values ranging from 11.45 ± 0.87 to 193.80 ± 6.52 µg/mL. Among them, 1G1 with an IC50 value of 11.45 ± 0.87 µg/mL was the most potential α-glucosidase inhibitor, which is about 30 times stronger than the positive control acarbose with an IC50 value of 346.63 ± 15.65 µg/mL.


Assuntos
Dimetilaliltranstransferase , Floretina , Floretina/farmacologia , Indóis/química , Carbono , Catálise , Prenilação
3.
J Am Chem Soc ; 146(13): 9455-9464, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38512342

RESUMO

Owing to the high H2O activity, the aqueous electrolyte in the Zn battery exhibits a narrow electrochemical window and inevitable hydrogen evolution reaction, limiting the anode utilization ratio and performance at high voltage. Carbonate ester, the well-developed electrolyte solvent in Li-ion batteries, exhibits aprotic properties and high anodic stability. However, its use in Zn metal batteries is limited due to the low solubility of Zn salts in carbonate esters. Herein, we propose a carbonate ester-based electrolyte (EC:DMC:EMC = 1:1:1 wt %), which contains a new Zn salt (Zn(BHFip)2) characterized by low cost, easy synthesis, and excellent aprotic solvent solubility. The BHFip- anion assists in forming Zn2+ conductive SEI on the anode and decomposes at high voltage to generate a protective CEI layer on the cathode. The Zn//Zn symmetric cell using such electrolyte achieves a remarkable Zn utilization ratio of 91% for 125 h, which has rarely been reported before. Furthermore, the Zn//LiMn2O4 full cell with an average operation voltage of 1.7 V demonstrates reliable cycling for 135 cycles with an N/P ratio of 1:1. In addition, the Zn//LiNi0.5Mn1.5O4 full cell exhibits a high discharge median voltage exceeding 2.2 V for 280 cycles, with the high voltage plateau (above 2 V) constituting 82% of the total capacity.

4.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38543149

RESUMO

General anesthetics were first used over 170 years ago; however, the mechanisms of how general anesthetics induce loss of consciousness (LOC) remain unclear. Ciprofol, a novel intravenous anesthetic, has been developed by incorporating cyclopropyl into the chemical structure of propofol. This modification offers the benefits of rapid onset and minimal injection pain. Recent studies have revealed that the glutamatergic neurons of the lateral habenula (LHb) play a crucial role in modulating the LOC induced by propofol and sevoflurane. Nevertheless, the specific involvement of LHb in the anesthetic effects of ciprofol remains uncertain. Here, using targeted recombination in active populations (TRAP) combined with electroencephalogram/electromyography recordings and the righting reflex behavioral test, our study revealed that intravenous infusion of ciprofol for 1 h could lead to the induction of c-Fos expression in the LHb in mice. The combination of TRAP and gene ablation, aimed at selectively ablating ciprofol-activated neurons in the LHb, has been shown to facilitate the emergence of ciprofol anesthesia and decrease the proportion of delta waves during the emergence phase. Chemogenetic inhibition of these neurons produced a comparable effect, whereas chemogenetic activation resulted in the opposite outcome. Chemogenetic activation of ciprofol-activated neurons in the LHb delays the emergence of anesthesia and induces a deep hypnotic state during the emergence phase. Taken together, our findings suggest that LHb ciprofol-activated neurons modulate the state of consciousness and could potentially be targeted to manipulate consciousness during ciprofol anesthesia.

5.
Chem Sci ; 15(9): 3174-3181, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38425507

RESUMO

Zirconium-based metal-organic frameworks (Zr-MOFs) have been extensively studied due to their very rich structural chemistry. The combination of nearly unlimited carboxylic acid-based linkers and Zr6 clusters with multiple connectivities has led to diverse structures and specific properties of resultant Zr-MOFs. Herein, we demonstrate the successful use of reticular chemistry to construct two novel Zr-MOFs, HIAM-4040 and HIAM-4040-OH, with zfu topology. Based on a thorough structural analysis of (4,4)-connected lvt-type Zr-tetracarboxylate frameworks and a judicious linker design, we have obtained the first example of a Zr-pentacarboxylate framework featuring unprecedented 5-connected organic linkers and 5-connected Zr6 clusters. Compared with HIAM-4040, a larger Stokes shift is achieved in HIAM-4040-OH via hydroxyl group induced excited-state intramolecular proton transfer (ESIPT). HIAM-4040-OH exhibits high chemical and thermal stability and is used for HClO detection in aqueous solution with excellent sensitivity and selectivity.

6.
Adv Food Nutr Res ; 108: 289-341, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38461002

RESUMO

Salmonella is a significant pathogen of human and animal health and poultry are one of the most common sources linked with foodborne illness worldwide. Global production of poultry meat and products has increased significantly over the last decade or more as a result of consumer demand and the changing demographics of the world's population, where poultry meat forms a greater part of the diet. In addition, the relatively fast growth rate of birds which is significantly higher than other meat species also plays a role in how poultry production has intensified. In an effort to meet the greater demand for poultry meat and products, modern poultry production and processing practices have changed and practices to target control and reduction of foodborne pathogens such as Salmonella have been implemented. These strategies are implemented along the continuum from parent and grandparent flocks to breeders, the farm and finished broilers to transport and processing and finally from retail to the consumer. This review focuses on common practices, interventions and strategies that have potential impact for the control of Salmonella along the poultry production continuum from farm to plate.


Assuntos
Doenças Transmitidas por Alimentos , Aves Domésticas , Animais , Humanos , Galinhas , Carne , Salmonella , Microbiologia de Alimentos
7.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 164-170, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38372099

RESUMO

The relationship between gut microbiota dysbiosis and heart failure has been drawing increasing attention. This study aimed to investigate the effects of oligo-xylulose (XOS) on the gut microbiota of mice with heart failure induced by pressure overload. A chronic heart failure mouse model was constructed by pressure overload, and XOS were administered in their diet. The gut microbiota was analyzed using 16S rRNA gene sequencing, and the effects of XOS on the microbiota composition were evaluated. . XOS supplementation improved the balance of intestinal microbiota in mice under pressure overload, increasing the abundance of beneficial bacteria, such as Bifidobacterium and Lactobacillus, while decreasing the abundance of harmful bacteria, such as Desulfovibrio and Enterococcus. XOS has potential as a dietary supplement to improve the balance of intestinal microbiota and benefit individuals with heart failure. The findings of this study suggest that modulating the gut microbiota could be a novel strategy for treating heart failure.


Assuntos
Microbioma Gastrointestinal , Insuficiência Cardíaca , Animais , Camundongos , RNA Ribossômico 16S/genética , Xilulose/farmacologia , Genes de RNAr , Insuficiência Cardíaca/genética
8.
Virology ; 593: 110015, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38359578

RESUMO

While the vast number of DNA and RNA viruses participate in biogeochemical cycles in natural systems, little is known about virome in river ecosystems. Here, we analyzed the DNA viral composition and its metabolic potential in the Yangtze River, including freshwater (FW) and freshwater sediments (FWS). A total of 1237 river-derived virus contigs (RVCs) were obtained following de novo assembly from 62 metagenomics. We found that the viral diversity is significantly positively correlated longitudinally. Moreover, FW exhibited a greater viral variety and significantly different composition than FWS. The viral co-occurrence network suggested that positive correlations predominate between RVCs. Lastly, 1657 viral functions were predicted by gene ontology. Notably, 96 of 150 RVCs with higher weights identified by random-forest classier were more abundant in FW, which most engage organic cyclic compound metabolic processes and hydrolase activity. Together, this study highlights the previously unrecognized viruses and the importance of their distributions and functions in major river systems.


Assuntos
Ecossistema , Vírus , Rios , Vírus de DNA/genética , Vírus/genética , DNA
9.
IEEE J Biomed Health Inform ; 28(4): 2211-2222, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38289848

RESUMO

Three-dimensional (3D) ultrasound imaging technique has been applied for scoliosis assessment, but the current assessment method only uses coronal projection images and cannot illustrate the 3D deformity and vertebra rotation. The vertebra detection is essential to reveal 3D spine information, but the detection task is challenging due to complex data and limited annotations. We propose VertMatch to detect vertebral structures in 3D ultrasound volume containing a detector and classifier. The detector network finds the potential positions of structures on transverse slice globally, and then the local patches are cropped based on detected positions. The classifier is used to distinguish whether the patches contain real vertebral structures and screen the predicted positions from the detector. VertMatch utilizes unlabeled data in a semi-supervised manner, and we develop two novel techniques for semi-supervised learning: 1) anatomical prior is used to acquire high-quality pseudo labels; 2) inter-slice consistency is used to utilize more unlabeled data by inputting multiple adjacent slices. Experimental results demonstrate that VertMatch can detect vertebra accurately in ultrasound volume and outperforms state-of-the-art methods. Moreover, VertMatch is also validated in automatic spinous process angle measurement on forty subjects with scoliosis, and the results illustrate that it can be a promising approach for the 3D assessment of scoliosis.


Assuntos
Escoliose , Humanos , Escoliose/diagnóstico por imagem , Imageamento Tridimensional/métodos , Coluna Vertebral/diagnóstico por imagem , Ultrassonografia
10.
Biotechnol Bioeng ; 121(5): 1543-1553, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38293815

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)-based screening has emerged as a powerful tool for identifying new gene targets for desired cellular phenotypes. The construction of guide RNA (gRNA) pools largely determines library quality and is usually performed using Golden Gate assembly or Gibson assembly. To date, library construction methods have not been systematically compared, and the quality check of each batch has been slow. In this study, an in-house nanopore sequencing workflow was established for assessing the current methods of gRNA pool construction. The bias of pool construction was reduced by employing the polymerase-mediated non-amplifying method. Then, a small gRNA pool was utilized to characterize stronger activation domains, specifically MED2 (a subunit of mediator complex) and HAP4 (a heme activator protein), as well as to identify better gRNA choices for dCas12a-based gene activation in Saccharomyces cerevisiae. Furthermore, based on the better CRISPRa tool identified in this study, a custom gRNA pool, which consisted of 99 gRNAs targeting central metabolic pathways, was designed and employed to screen for gene targets that could improve ethanol utilization in S. cerevisiae. The nanopore sequencing-based workflow demonstrated here should provide a cost-effective approach for assessing the quality of customized gRNA library, leading to faster and more efficient genetic and metabolic engineering in S. cerevisiae.


Assuntos
Sequenciamento por Nanoporos , RNA Guia de Sistemas CRISPR-Cas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ativação Transcricional , Clonagem Molecular , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos
11.
Small Methods ; 8(2): e2300210, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37231562

RESUMO

Ionic liquids (ILs) are extensively utilized for the manipulation of crystallization kinetics of perovskite, morphology optimization, and defect passivation for the fabrication of highly efficient and stable devices. However, comparing ILs with different chemical structures and selecting the appropriate ILs from the many types available to enhance perovskite device performance remains a challenge. In this study, a range of ILs containing different sizes of anions are introduced as additives for assisting in film formation in perovskite photovoltaics. Specifically, ILs with various sizes significantly affects the strength of chemical interaction between ILs and perovskite composition, inducing varying degrees of conversion of lead iodide to perovskite as well as the formation of perovskite films with markedly disparate grain sizes and morphology. Theoretical calculations in conjunction with experimental measurements revealed that small-sized anion can more effectively reduce defect density by filling halide vacancies within perovskite bulk materials, resulting in suppression of charge-carrier recombination, an extended photoluminescence lifetime, and significantly improved device performance. Boosted by ILs with appropriate size, the champion power conversion efficiency of 24.09% for the ILs-treated device is obtained, and the unencapsulated devices retain 89.3% of its original efficiency under ambient conditions for 2000 h.

12.
Eur J Clin Invest ; 54(1): e14098, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37724975

RESUMO

BACKGROUND: To assess the prevalence trend and contributing factors of heart failure (HF) impairment with thalassemias at global, regional and national levels. METHODS: Data on HF impairment with thalassemias was collected from the Global Burden of Disease study. The absolute number and prevalence of the disease were systematically collected for each year, and the estimated annual percentage changes (EAPC) in HF impairment were calculated by gender, region and country to measure temporal trends. RESULTS: Thalassemias have caused a significant global burden since 1990, and the case number of HF related to thalassemias has been steadily increasing. The highest case number of HF impairments with thalassemias is observed in China (7739 cases) and the highest prevalence is in Pakistan (1.61 per 100,000) currently. Besides, the middle sociodemographic index (SDI) region carries the highest burden of comorbid disease yet exhibits the most evident trend for improvement across the five regions (EAPC = -.98). The burden of thalassemias and comorbid HF is generally higher in males than females with the gender gap growing chasm in the future. Besides, the hotspots of HF impairment with thalassemias have gradually shifted to low SDI regions, though middle SDI regions still hold a relatively higher prevalence (.37 per 100,000) across different regions. CONCLUSIONS: The burden of thalassemias and accompanying HF, as well as their temporal trends, vary greatly across countries and regions. These findings can improve understanding of these conditions and guide policymakers in developing appropriate policies to address disparities between countries.


Assuntos
Insuficiência Cardíaca , Talassemia , Feminino , Masculino , Humanos , Prevalência , Insuficiência Cardíaca/epidemiologia , China/epidemiologia , Saúde Global , Incidência
13.
Small ; : e2307679, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054777

RESUMO

Ionic liquids (ILs) have emerged as versatile tools for interfacial engineering in perovskite photovoltaics. Their multifaceted application targets defect mitigation at SnO2 -perovskite interfaces, finely tuning energy level alignment, and enhancing charge transport, meanwhile suppressing non-radiative recombination. However, the diverse chemical structures of ILs present challenges in selecting suitable candidates for effective interfacial modification. This study adopted a systematic approach, manipulating IL chemical structures. Three ILs with distinct anions are introduced to modify perovskite/SnO2 interfaces to elevate the photovoltaic capabilities of perovskite devices. Specifically, ILs with different anions exhibited varied chemical interactions, leading to notable passivation effects, as confirmed by Density Functional Theory (DFT) calculation. A detailed analysis is also conducted on the relationship between the ILs' structure and regulation of energy level arrangement, work function, perovskite crystallization, interface stress, charge transfer, and device performance. By optimizing IL chemical structures and exploiting their multifunctional interface modification properties, the champion device achieved a PCE of 24.52% with attentional long-term stability. The study establishes a holistic link between IL structures and device performance, thereby promoting wider application of ILs in perovskite-based technologies.

14.
Chemistry ; : e202303667, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057693

RESUMO

Boosting the circularly polarized luminescence of small organic molecules has been a stubborn challenge because of weak structure rigidity and dynamic molecular motions. To investigate and eliminate these factors, here, we carried out the structure-property relationship studies on a newly-developed axial chiral scaffold of bidibenzo[b,d]furan. The molecular rigidity was finely tuned by gradually reducing the alkyl-chain length. The environmental factors were considered in solution, crystal, and polymer matrix at different temperatures. As a result, a significant amplification of the dissymmetry factor glum from 10-4 to 10-1 was achieved, corresponding to the situation from (R)-4C in solution to (R)-1C in polymer film at room temperature. A synergistic strategy of increasing the intramolecular rigidity and enhancing the intermolecular interaction to restrict the molecular motions was thus proposed to improve circularly polarized luminescence. The though-out demonstrated relationship will be of great importance for the development of high-performance small organic chiroptical systems in the future.

15.
Precis Chem ; 1(9): 524-529, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38037594

RESUMO

Hydrogen-bonded organic frameworks (HOFs) are an emerging class of porous materials that hold promise for the adsorptive separation of industrially relevant gas mixtures. However, developing HOFs with high thermal stability and resistance to water remains a daunting challenge. We report here a microporous HOF (HIAM-103) assembled from a hexacarboxylate linker (2,4,6-trimethylbenzene-1,3,5-triylisophthalic acid, H6TMBTI). The compound crystallizes in the trigonal crystal system, and its structure is a four-fold interpenetrated network. Upon thermal activation, the single crystals remain intact, allowing for precise determination of the activated structure. HIAM-103 exhibits remarkable thermal and hydrothermal stability. Its microporous channels demonstrate selective adsorption of C2H6 over C2H4 and Xe over Kr, and its separation capability toward mixed gases has been validated by column breakthrough experiments under dry and humid conditions. The preferential gas adsorption sites and separation mechanisms have been uncovered through DFT analysis, which suggests that the methyl group decorated 1D channels are the primary reason for the selective adsorption.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38079097

RESUMO

Inherited anemia continues to pose a significant public health concern on a global scale, owing to its extensive geographical prevalence, substantial patient population, and profound ramifications. Here, we investigated detailed information on inherited anemias (including thalassemias, thalassemias trait, sickle cell disease, sickle cell trait, G6PD deficiency, and G6PD trait) for the period 1990-2019 from the Global Burden of Disease study. Over the course of three decades, there has been a persistent rise in the incidence of inherited anemias worldwide, culminating in a total of 44,896,026 incident cases in 2019. However, the prevalence of inherited anemias has exhibited a consistent downward trend over successive years. Significantly, these inherited anemias primarily impact females, exhibiting a male-to-female ratio of 1:1.88. Among males, the most prevalent inherited anemia is G6PD deficiency, whereas G6PD trait prevails among females. The incidence rates of inherited anemias and their temporal trend exhibited significant variations across different regions, with Central Sub-Saharan Africa displaying the highest incidence rates and Central Latin America experiencing the most substantial decline. The findings of this study suggest a significant correlation between the Socio-Demographic index (SDI) and incidence rates of inherited anemias, particularly in regions with lower SDI levels such as Africa and South Asia. These results contribute valuable insights for the analysis of global trends in the burden of inherited anemias.

17.
Dalton Trans ; 52(47): 17679-17683, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37997636

RESUMO

Herein, three tritopic carboxylic acids were used to construct three Zr-MOFs, HIAM-4033, HIAM-4034, and HIAM-4035, to investigate the effect of carboxyl position on the MOF structures. The results showed that HIAM-4033 and HIAM-4034 possess (3,9)-c models with different underlying nets, whereas HIAM-4035 exhibits the same underlying net as UiO-68. Nanosized HIAM-4033 exhibits excellent sensitivity and selectivity for detecting aromatic acids, such as benzoic acid and 2-fluorobenzoic acid, compared with aliphatic acids and inorganic acids. This study offers new insights into achieving an organic linker directed structure evolution of Zr-MOFs, which might facilitate the discovery of unprecedented underlying nets.

18.
J Fungi (Basel) ; 9(11)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37998897

RESUMO

Phoma stem canker (blackleg), caused by the fungi Leptosphaeria maculans (anamorph Phoma lingam) and L. biglobosa, is one of the most devastating diseases in oilseed rape (Brassica napus L.) production worldwide. However, the population structure and genetic variation of L. biglobosa populations in China have rarely been investigated. Here, a collection of 214 fungal strains of blackleg from China (including Shaanxi, Jiangxi, Hubei, Jiangsu, Chongqing, Sichuan, Guangxi, Guizhou, Hunan, and Henan) and Europe (France and Ukraine) was identified as L. biglobosa. Three simple sequence repeat (SSR) markers were developed to characterize their population structure. The results showed that the Nei's average gene diversity ranged from 0.6771 for the population from Jiangsu to 0.3009 for the population from Hunan. In addition, most of the genetic variability (96%) occurred within groups and there were only relatively small amounts among groups (4.0%) (FST = 0.043, p = 0.042 < 0.05). Pairwise population differentiation (FST) suggested that significant genetic differentiation was observed between different L. biglobosa populations. Bayesian and unweighted average method analysis revealed that these L. biglobosa strains were clustered into three branches, and three European strains were similar to those from eastern China. The pathogenicity assay showed that those in Group III were significantly more virulent than those in Group I (t = 2.69, p = 0.016). The study also showed that Group III was dominant in Chinese L. biglobosa populations, which provides new insights for the further study of population evolution and the management of this pathogen.

19.
Curr Issues Mol Biol ; 45(10): 7974-7995, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37886947

RESUMO

The central player for chromosome segregation in both mitosis and meiosis is the macromolecular kinetochore structure, which is assembled by >100 structural and regulatory proteins on centromere DNA. Kinetochores play a crucial role in cell division by connecting chromosomal DNA and microtubule polymers. This connection helps in the proper segregation and alignment of chromosomes. Additionally, kinetochores can act as a signaling hub, regulating the start of anaphase through the spindle assembly checkpoint, and controlling the movement of chromosomes during anaphase. However, the role of various kinetochore proteins in plant meiosis has only been recently elucidated, and these proteins differ in their functionality from those found in animals. In this review, our current knowledge of the functioning of plant kinetochore proteins in meiosis will be summarized. In addition, the functional similarities and differences of core kinetochore proteins in meiosis between plants and other species are discussed, and the potential applications of manipulating certain kinetochore genes in meiosis for breeding purposes are explored.

20.
Ann Hematol ; 102(12): 3401-3412, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37878012

RESUMO

Acute myeloid leukemia (AML) is a common heterogeneous malignancy. Novel molecular markers aid diagnosis, patient sub-categorization, and optimal clinical decisions. Here, we explored the prognostic implications associated with the expression of the programmed cell death (PDCD) family of molecules in AML patients. Based on the findings from the TCGA and OHSU cohorts, we observed that the mRNA abundance of PDCD4 is significantly higher compared to other molecules within the PDCD family. Furthermore, high expression of PDCD4 was associated with predicted long-term patient survival in diagnosed AML patients. In the chemotherapy group, patients with high PDCD4 expression showed a tendency toward longer overall survival (OS) (P = 0.0266) and event-free survival (EFS) (P = 0.0008). High PDCD4 levels served as a favorable independent predictor for both OS and EFS in AML patients. However, subgroup analyses in the hematopoietic stem cell transplantation (HSCT) group revealed no significant difference in OS or EFS between individuals with high and low PDCD4 expression. Furthermore, in the low PDCD4 expression group, AML patients who underwent HSCT experienced improved survival outcomes (P = 0.0015), helping to mitigate the unfavorable prognosis associated with PDCD4 downregulation. Conversely, in the high PDCD4 expression group, HSCT offered a notable short-term survival advantage, while patients with high PDCD4 expression responded favorably to long-term survival through chemotherapy. Biological function enrichment showed that the expression of PDCD4 was correlated with complement and coagulation cascades, cell receptor signaling pathways, and cholesterol metabolism. The findings from this study will aid in better categorizing heterogeneous AML patients and guiding more appropriate clinical decision-making.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Prognóstico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Intervalo Livre de Progressão , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/uso terapêutico , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...